
Characteristic of RISC – 
1. Simpler instruction, hence simple instruction decoding. 
2. Instruction come under size of one word. 
3. Instruction take single clock cycle to get executed. 
4. More number of general purpose register. 
5. Simple Addressing Modes. 
6. Less Data types. 
7. Pipeline can be achieved. 

Characteristic of CISC – 
1. Complex instruction, hence complex instruction decoding. 
2. Instruction are larger than one word size. 
3. Instruction may take more than single clock cycle to get executed. 
4. Less number of general purpose register as operation get performed in memory itself. 
5. Complex Addressing Modes. 
6. More Data types. 

Example – Suppose we have to add two 8-bit number: 
• CISC approach: There will be a single command or instruction for this like ADD which will perform the task. 
• RISC approach: Here programmer will write first load command to load data in registers then it will use 

suitable operator and then it will store result in desired location. 
So, add operation is divided into parts i.e. load, operate, store due to which RISC programs are longer and require 
more memory to get stored but require less transistors due to less complex command. 

Difference – 

RISC CISC 

Focus on software Focus on hardware 

Uses only Hardwired control unit Uses both hardwired and micro programmed control unit 



RISC CISC 

Transistors are used for more registers 
Transistors are used for storing complex 
Instructions 

Fixed sized instructions Variable sized instructions 

Can perform only Register to Register Arithmetic 
operations 

Can perform REG to REG or REG to MEM or MEM to 
MEM 

Requires more number of registers Requires less number of registers 

Code size is large Code size is small 

A instruction execute in single clock cycle Instruction take more than one clock cycle 

A instruction fit in one word Instruction are larger than size of one word 

 

Arithmetic Instructions 

Instructions of this group perform addition, subtraction, multiplication, division, increment, decrement, comparison, 

ASCII and decimal adjustment etc. 

The following instructions come under this category: 



Instruction Description 

ADD Adds data to the accumulator i.e. AL or AX register or memory locations. 

ADC Adds specified operands and the carry status (i.e. carry of the previous stage). 

SUB Subtract immediate data from accumulator, memory or register. 

SBB Subtract immediate data with borrow from accumulator, memory or register. 

MUL Unsigned 8-bit or 16-bit multiplication. 

IMUL Signed 8-bit or 16-bit multiplication. 

DIV Unsigned 8-bit or 16-bit division. 

IDIV Signed 8-bit or 16-bit division. 

INC Increment Register or memory by 1. 

DEC Decrement register or memory by 1. 

DAA Decimal Adjust after BCD Addition: When two BCD numbers are added, the DAA is used after 

ADD or ADC instruction to get correct answer in BCD. 

DAS Decimal Adjust after BCD Subtraction: When two BCD numbers are added, the DAS is used 

after SUB or SBB instruction to get correct answer in BCD. 



AAA ASCII Adjust for Addition: When ASCII codes of two decimal digits are added, the AAA is used 

after addition to get correct answer in unpacked BCD. 

AAD Adjust AX Register for Division: It converts two unpacked BCD digits in AX to the equivalent 

binary number. This adjustment is done before dividing two unpacked BCD digits in AX by an 

unpacked BCD byte. 

AAM Adjust result of BCD Multiplication: This instruction is used after the multiplication of two 

unpacked BCD. 

AAS ASCII Adjust for Subtraction: This instruction is used to get the correct result in unpacked 

BCD after the subtraction of the ASCII code of a number from ASCII code another number. 

CBW Convert signed Byte to signed Word. 

CWD Convert signed Word to signed Doubleword. 

NEG Obtains 2's complement (i.e. negative) of the content of an 8-bit or 16-bit specified register or 

memory location(s). 

CMP Compare Immediate data, register or memory with accumulator, register or memory location(s). 

Logical Instructions 

Instruction of this group perform logical AND, OR, XOR, NOT and TEST operations. The following instructions come 

under this category: 



Instruction Description 

AND Performs bit by bit logical AND operation of two operands and places the result in the specified 

destination. 

OR Performs bit by bit logical OR operation of two operands and places the result in the specified 

destination. 

XOR Performs bit by bit logical XOR operation of two operands and places the result in the specified 

destination. 

NOT Takes one's complement of the content of a specified register or memory location(s). 

TEST Perform logical AND operation of a specified operand with another specified operand. 

Rotate Instructions 

The following instructions come under this category: 

Instruction Description 

RCL Rotate all bits of the operand left by specified number of bits through carry flag. 

RCR Rotate all bits of the operand right by specified number of bits through carry flag. 



ROL Rotate all bits of the operand left by specified number of bits. 

ROR Rotate all bits of the operand right by specified number of bits. 

Shift Instructions 

The following instructions come under this category: 

Instruction Description 

SAL or SHL Shifts each bit of operand left by specified number of bits and put zero in LSB position. 

SAR Shift each bit of any operand right by specified number of bits. Copy old MSB into new MSB. 

SHR Shift each bit of operand right by specified number of bits and put zero in MSB position. 

Branch Instructions 

It is also called program execution transfer instruction. Instructions of this group transfer program execution from the 
normal sequence of instructions to the specified destination or target. The following instructions come under this 

category: 

Instruction Description 

JA or JNBE Jump if above, not below, or equal i.e. when CF and ZF = 0 



JAE/JNB/JNC Jump if above, not below, equal or no carry i.e. when CF = 0 

JB/JNAE/JC Jump if below, not above, equal or carry i.e. when CF = 0 

JBE/JNA Jump if below, not above, or equal i.e. when CF and ZF = 1 

JCXZ Jump if CX register = 0 

JE/JZ Jump if zero or equal i.e. when ZF = 1 

JG/JNLE Jump if greater, not less or equal i.e. when ZF = 0 and CF = OF 

JGE/JNL Jump if greater, not less or equal i.e. when SF = OF 

JL/JNGE Jump if less, not greater than or equal i.e. when SF ≠ OF 

JLE/JNG Jump if less, equal or not greater i.e. when ZF = 1 and SF ≠ OF 

JMP Causes the program execution to jump unconditionally to the memory address or label 

given in the instruction. 

CALL Calls a procedure whose address is given in the instruction and saves their return 

address to the stack. 

RET Returns program execution from a procedure (subroutine) to the next instruction or main 

program. 



IRET Returns program execution from an interrupt service procedure (subroutine) to the main 

program. 

INT Used to generate software interrupt at the desired point in a program. 

INTO Software interrupts to indicate overflow after arithmetic operation. 

LOOP Jump to defined label until CX = 0. 

LOOPZ/LOOPE Decrement CX register and jump if CX ≠ 0 and ZF = 1. 

LOOPNZ/LOOPNE Decrement CX register and jump if CX ≠ 0 and ZF = 0. 

Here, CF = Carry Flag 
ZF = Zero Flag 
OF = Overflow Flag 

SF = Sign Flag 
CX = Register 

Flag Manipulation and Processor Control Instructions 

Instructions of this instruction set are related to flag manipulation and machine control. The following instructions come 
under this category: 

Instruction Description 

CLC Clear Carry Flag: This instruction resets the carry flag CF to 0. 



CLD Clear Direction Flag: This instruction resets the direction flag DF to 0. 

CLI Clear Interrupt Flag: This instruction resets the interrupt flag IF to 0. 

CMC This instruction take complement of carry flag CF. 

STC Set carry flag CF to 1. 

STD Set direction flag to 1. 

STI Set interrupt flag IF to 1. 

HLT Halt processing. It stops program execution. 

NOP Performs no operation. 

ESC Escape: makes bus free for external master like a coprocessor or peripheral device. 

WAIT When WAIT instruction is executed, the processor enters an idle state in which the processor 

does no processing. 

LOCK It is a prefix instruction. It makes the LOCK pin low till the execution of the next instruction. 

String Instructions 

String is series of bytes or series of words stored in sequential memory locations. The 8086 provides some instructions 

which handle string operations such as string movement, comparison, scan, load and store. 



The following instructions come under this category: 

Instruction Description 

MOVS/MOVSB/MOVSW Moves 8-bit or 16-bit data from the memory location(s) addressed by SI register to 

the memory location addressed by DI register. 

CMPS/CMPSB/CMPSW Compares the content of memory location addressed by DI register with the 

content of memory location addressed by SI register. 

SCAS/SCASB/SCASW Compares the content of accumulator with the content of memory location 

addressed by DI register in the extra segment ES. 

LODS/LODSB/LODSW Loads 8-bit or 16-bit data from memory location addressed by SI register into AL or 

AX register. 

STOS/STOSB/STOSW Stores 8-bit or 16-bit data from AL or AX register in the memory location addressed 

by DI register. 

REP Repeats the given instruction until CX ≠ 0 

REPE/ REPZ Repeats the given instruction till CX ≠ 0 and ZF = 1 

REPNE/REPNZ Repeats the given instruction till CX ≠ 0 and ZF = 0 

 


